如图,点M是线段AB的中点,N在MB上,MN=AM,若AM=15cm.求线段NB的长.
如图,在平面直角系中,直线:分别交轴、轴于、两点,直线分别交轴、轴于、两点,是轴上的一点,,过作轴交于,连接,当动点在线段上运动(不与点点重合)且时(1)求证:∽;(2)求线段的长(用的代数式表示);(3)若直线的方程是,求tan∠BAC的值.
已知:如图,在梯形ABCD中,AD//BC,∠BCD=90º,对角线AC、BD相交于点E,且AC⊥BD. (1)求证:; (2)点F是边BC上一点,联结AF,与BD相交于点G.如果∠BAF =∠DBF,求证:.
小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:如图,已知锐角△ABC,则(1)试证明上述结论;(2)运用这个新的结论,请完成下题:如图,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?
如图,在△中,平分交于点,交于点,,,.求与的长.
如图,已知两个不平行的向量、.先化简,再求作:2(+)-(2-4)(不要求写作法,但要指出图中表示结论的向量)