小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:如图,已知锐角△ABC,则(1)试证明上述结论;(2)运用这个新的结论,请完成下题:如图,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?
在平面直角坐标系中,△ABC三个顶点的坐标分别是A(3,6)、B(1,4)、C(1,0). (1)△ABC外接圆的圆心坐标是; (2)求以BC为轴,将△ABC旋转一周所得几何体的全面积(即求所有表面的面积之和,结果保留根号和π)
小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB=3cm,高OC=4cm,求这个圆锥形漏斗的侧面积.
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积.
如图,已知每个小正方形的边长为1cm,O、A、B都在小正方形顶点上,扇形OAB是某个圆锥的侧面展开图. (1)计算这个圆锥侧面展开图的面积; (2)求这个圆锥的底面半径.
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°. (1)求图中阴影部分的面积; (2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. (3)试判断⊙O中其余部分能否给(2)中的圆锥做两个底面.