小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:如图,已知锐角△ABC,则(1)试证明上述结论;(2)运用这个新的结论,请完成下题:如图,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?
如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.
如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,。(1)求点A的坐标;(2)若直线AB交y轴于点C,求的面积。
解不等式组:并写出不等式组的整数解。
计算:
如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动. (1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围. (2)当五边形BCDNM面积最小时,请判断△AMN的形状.