如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.
已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式; (2)求二次函数的图象与x轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成的形式.
如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于的二次函数y= mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.
已知:二次函数.(1)求出该二次函数图象的对称轴和顶点坐标;(2)求出该抛物线与x轴的交点坐标;(3)当x取何值时,y<0.
如图,已知二次函数y=x2-2x+3的图象的顶点为A,且与y轴交于点C.(1)求点A与点C的坐标;(2)若将此函数的图象沿x轴向右平移1个单位,再沿y轴向下平移3个单位,请直接写出平移后图象所对应的函数关系式及点C的对应点的坐标;(3)若A(m,y1),B(m+1,y2)两点都在此函数的图象上,试比较y1与y2的大小.