设数列的前项和为,已知,,.(1)设,求证:数列是等比数列;(2)若数列是单调递增数列,求实数的取值范围.
(本题满分14分)已知函数,求在区间[2,5]上的最大值和最小值
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤).17.设全集,,,求,,,
(本小题满分12分)已知定义域为的函数满足:①时,;②③对任意的正实数,都有(1)求证:;(2)求证:在定义域内为减函数;(3)求不等式的解集.
(本小题满分12分)商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:(1)买1个茶壶赠送1个茶杯;(2)按总价打9折付款(即按原价的90%付款)。某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若以购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
(本题12分)设若,试求:(1)的值。(2)的值