(本小题满分12分)商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:(1)买1个茶壶赠送1个茶杯;(2)按总价打9折付款(即按原价的90%付款)。某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若以购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
一种放射性元素,最初的质量为,按每年衰减. (1)求年后,这种放射性元素的质量与的函数关系式; (2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).()
已知集合,集合. (1)若,求; (2)若,求的取值范围.
设函数 (Ⅰ)设,,证明:在区间内存在唯一的零点; (Ⅱ)设,若对任意,有,求的取值范围
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费 (Ⅰ)设每月用电度,应交电费元,写出关于的函数; (Ⅱ)已知小王家第一季度缴费情况如下:
问:小王家第一季度共用了多少度电?
已知函数 (Ⅰ)判断函数在上的单调性,并用定义加以证明; (Ⅱ)若对任意,总存在,使得成立,求实数的取值范围