三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤).17.设全集,,,求,,,
设函数(1)解不等式f(x)<0;(2)试推断函数f(x)是否存在最小值?若存在,求出其最小值;若不存在,说明理由.
1.已知数列,其中,且数列为等比数列,求常数.2.设是公比不相等的两个等比数列,,证明数列不是等比数列.
设Sn为等差数列{an}的前n项和.(n∈N*).(Ⅰ)若数列{an}单调递增,且a2是a1、a5的等比中项,证明:(Ⅱ)设{an}的首项为a1,公差为d,且,问是否存在正常数c,使对任意自然数n都成立,若存在,求出c(用d表示);若不存在,说明理由.
已知等比数列及等差数列,其中,公差,将这两个数列对应项相加得到一个新的数列1,1,2,…,求这个新数列的前10项之和
设等差数列的前n项和为;设,问是否可能为一与n无关的常数?若不存在,说明理由.若存在,求出所有这样的数列的通项公式.