甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换 设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示. (1)求甲组加工零件的数量y与时间之间的函数关系式. (2)当x=2.8时,甲、乙两组共加工零件 件;乙组加工零件总量的值为 . (3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?
如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号. (1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果; (2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图. 根据以上统计图提供的信息,回答下列问题: (1)此次调查抽取的学生人数为a=人,其中选择“绘画”的学生人数占抽样人数的百分比为b=; (2)补全条形统计图; (3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?
已知:如图,点A、B、C在同一直线上,AB=CD,AE∥CF,且AE=CF. 求证:∠E=∠F.
已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点. (1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式); (2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由; (3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.