已知圆:,设点是直线:上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.(1)若,,求直线的方程;(2)若O为原点,经过三点的圆的圆心是,求线段长的最小值.
(本小题9分) 如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。 (I)求证:PA//平面EFG; (II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。
(本小题8分) 数列满足,先计算前4项后,猜想的表达式,并用数学归纳法证明.
已知函数有下列性质:“若,则存在,使得”成立 (I)证明:若,则唯一存在,使得; (II) 设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由
已知函数,. (I)求的最值; (II) 设,函数,;若对于任意,总存在,使得成立,求的取值范围
已知函数. (I)求的单调区间; (II) 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。