设椭圆 C1:()的一个顶点与抛物线 C2: 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点.(I)求椭圆C的方程;(II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
已知函数,其中, (1)当时,求曲线在点处的切线方程; (2)讨论的单调性; (3)若有两个极值点和,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.
已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点. (1)求椭圆标准方程; (2)设动点满足:,直线与的斜率之积为,证明:存在定点使 得为定值,并求出的坐标; (3)若在第一象限,且点关于原点对称,垂直于轴于点,连接并延长交椭圆于点,记直线的斜率分别为,证明:.
在四棱锥中,,,,为的中点,为的中点,. (1)求证:; (2)求证:; (3)求三棱锥的体积.
已知等差数列的前项和为. (1)请写出数列的前项和公式,并推导其公式; (2)若,数列的前项和为,求的和.
空气质量指数(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
某市年月日—月日(天)对空气质量指数进行监测,获得数据后得到如下条形图. (1)估计该城市一个月内空气质量类别为优的概率; (2)从空气质量级别为三级和四级的数据中任取个,求恰好有一天空气质量类别为中度污染的概率.