设椭圆 C1:()的一个顶点与抛物线 C2: 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点.(I)求椭圆C的方程;(II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
(本小题满分12分) 在直三棱柱中, AC=4,CB=2,AA1=2,,E、F分别是的中点。 (1)证明:平面平面; (2)证明:平面ABE; (3)设P是BE的中点,求三棱锥的体积。
(本小题满分10分) 已知向量设函数 (1)求的最小正周期与单调递减区间; (2)在△ABC中分别是角A、B、C的对边,若△ABC的面积为,求的值.
.(本题满分12分) 已知四棱锥的底面为直角梯形,//,,底面,且. (1)证明:平面; (2)求二面角的余弦值的大小.
(本题满分12分) 已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分12分)设为抛物线的焦点,为抛物线上任意一点,已为圆心,为半径画圆,与轴负半轴交于点,试判断过的直线与抛物线的位置关系,并证明。