设椭圆 C1:()的一个顶点与抛物线 C2: 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点.(I)求椭圆C的方程;(II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
解关于的不等式:
(本小题12分) 如图,正方体ABCD-A1B1C1D1的棱长为2. (Ⅰ)证明:AC⊥B1D; (Ⅱ)求三棱锥C-BDB1的体积。
(本小题12分) 在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长。
(本小题10分) 如图,半径为2的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的体积。(其中∠BAC=30°)
(本小题满分12分) 已知函数f(x)=lnx-,其中a为常数,且a>0. (1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求函数f(x)的单调递减区间; (2)若函数f(x)在区间[1,3]上的最小值为,求a的值.