在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
某学校为了增强学生体质,决定开设以下体育课外活动项目: A 篮球、 B 乒乓球、 C 跳绳、 D 踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
如图所示, ΔABC 中, D 是 BC 边上一点, E 是 AD 的中点,过点 A 作 BC 的平行线交 CE 的延长线于 F ,且 AF = BD ,连接 BF .
(1)求证: D 是 BC 的中点;
(2)若 AB = AC ,试判断四边形 AFBD 的形状,并证明你的结论.
如图,抛物线与 x 轴交于点 A ( − 5 , 0 ) 和点 B ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 5 ) .有一宽度为1,长度足够的矩形(阴影部分)沿 x 轴方向平移,与 y 轴平行的一组对边交抛物线于点 P 和 Q ,交直线 AC 于点 M 和 N .交 x 轴于点 E 和 F .
(1)求抛物线的解析式;
(2)当点 M 和 N 都在线段 AC 上时,连接 MF ,如果 sin ∠ AMF = 10 10 ,求点 Q 的坐标;
(3)在矩形的平移过程中,当以点 P , Q , M , N 为顶点的四边形是平行四边形时,求点 M 的坐标.
已知正方形 ABCD 的边长为1,点 P 为正方形内一动点,若点 M 在 AB 上,且满足 ΔPBC ∽ ΔPAM ,延长 BP 交 AD 于点 N ,连接 CM .
(1)如图一,若点 M 在线段 AB 上,求证: AP ⊥ BN ; AM = AN ;
(2)①如图二,在点 P 运动过程中,满足 ΔPBC ∽ ΔPAM 的点 M 在 AB 的延长线上时, AP ⊥ BN 和 AM = AN 是否成立?(不需说明理由)
②是否存在满足条件的点 P ,使得 PC = 1 2 ?请说明理由.
小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为 2500 m ,如图是小明和爸爸所走的路程 s ( m ) 与小明步行时间 t ( min ) 的函数图象.
(1)直接写出小明所走路程 s 与时间 t 的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早 20 min 到达公园,则小明在步行过程中停留的时间需作怎样的调整?