某学校为了增强学生体质,决定开设以下体育课外活动项目: A 篮球、 B 乒乓球、 C 跳绳、 D 踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
如图,在 ΔABC 中, AB=AC ,点 O 在 AC 上,以 OC 为半径作 ⊙O ,与 BC 相交于点 D ,与 AB 相切于点 E ,过点 D 作 DF⊥AB ,垂足为 F .
(1)求证: DF 是 ⊙O 的切线;
(2)若 tan∠A= 3 4 , BF=2 ,求 ⊙O 的半径.
如图,学校的教学楼对面是一幢办公楼,教学楼与办公楼的水平距离 BC=30m ,卓玛在教学楼顶部 A 处测得办公楼顶部 D 处的俯角 α 为 30° ,测得办公楼底部 C 处俯角 β 为 60° ,求办公楼的高 CD .(结果保留根号)
列方程(组 ) 解应用题
为了绿化校园环境,某学习小组共10人去校园空地参加植树活动,其中男生每人植树2棵,女生每人植树1棵,该小组一共植树16棵,问男生与女生各多少人?
如图,在平行四边形 ABCD 中, E 是 AD 边上的中点,连接 BE 并延长交 CD 的延长线于点 F .
求证: DF=DC .
如图,抛物线 y=- x 2 +mx+2 与 x 轴交于 A , B 两点,与 y 轴交于 C 点,点 A 的坐标为 (1,0) .
(1)求抛物线的解析式;
(2)在抛物线的对称轴 l 上找一点 P ,使 PA+PC 的值最小.并求出 P 点坐标;
(3)在第二象限内的抛物线上,是否存在点 M ,使得 ΔMBC 的面积是 ΔABC 面积的一半?若存在,求出点 M 的坐标,若不存在,请说明理由.