抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.
先化简,再求值:,其中x=2.
尺规作图:画出线段AB的垂直平分线(不写作法,保留作图痕迹)
解方程组.
在平面直角坐标系中,点O为原点,抛物线y=ax2+bx(其中-1≤a<0)经过A(3,n),AB⊥y轴于B,抛物线交直线AB于M.(1)若n=1,AB=3BM,求抛物线所对应的函数关系式;(2)若n=a+b,抛物线与x轴另一个异于原点的交点为C,过点A作AP∥OM交直线MC于点P,当△OPM的面积最大时,求sin∠MOP的值.
如图,四边形ABCD是⊙O的内接四边形,,点E、F分别是弦AD、DC上的点.(1)若∠ABE=∠CBF,BE=BF.求证:BD是⊙O的直径.(2)若,∠D=2∠EBF=90°,AE=ED=2.求DF的长.