在平面直角坐标系中,点O为原点,抛物线y=ax2+bx(其中-1≤a<0)经过A(3,n),AB⊥y轴于B,抛物线交直线AB于M.(1)若n=1,AB=3BM,求抛物线所对应的函数关系式;(2)若n=a+b,抛物线与x轴另一个异于原点的交点为C,过点A作AP∥OM交直线MC于点P,当△OPM的面积最大时,求sin∠MOP的值.
B,C,D三点在一条直线上,△ABC和△ECD是等边三角形.求证:BE=AD.
如图所示,已知∠1=∠2,∠C=∠D,求证:
先化简,再求值: 2(a-3)(a+2)-(3+a)(3-a)-3(a-1)2其中a=-2
化简:(8a3b4-5a2b2)÷(-2ab)2
列方程解应用题(本题4分)小明周六去北京图书馆查阅资料,他家距图书馆35千米,小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行速度的7倍,求公交车平均每小时行驶多少千米?