某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5. (1)若该客户按方案①购买,需付款 元:(用含x的代数式表示) 若该客户按方案②购买,需付款 元;(用含x的代数式表示) (2)若x=10,通过计算说明此时按哪种方案购买较为合算?
解方程 (1) (2)(x+3)(x-6)=
2015年9月19日第九届合肥文博会开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少? (3)开幕后,合肥市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少?
如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米. (1)求直线OA的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
如图,反比例函数与一次函数的图象交于两点A(1,3)、B(n,-1). (1)求这两个函数的解析式; (2)观察图象,请直接写出不等式的解集; (3)点C为x轴正半轴上一点,连接AO、AC,且AO=AC,求⊿AOC的面积.
已知二次函数. (1)求证:不论为何实数,此二次函数的图象与轴都有两个不同交点; (2)若此函数有最小值,求这个函数表达式.