如图,在同一个平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.
如图四边形ABCD内接于⊙O ,BD是⊙O 的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O 的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.
在平面直角坐标系中,O为坐标原点,抛物线y=-x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8. (1)求点B的坐标和此二次函数的解析式; (2)当y≤4时,直接写出x的取值范围.
如图,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
已知关于的一元二次方程x2-4x+k+1=0 (1)若=-1是方程的一个根,求k值和方程的另一根; (2)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.
如图所示,是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O上.(1)若,求的度数;(2)若,,求的长.