一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?
(自贡)观察下表 我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题: (1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 ; (2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16, ①求x,y的值; ②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
(内江)(1)填空:= ;= ;= . (2)猜想:= (其中n为正整数,且). (3)利用(2)猜想的结论计算:.
(达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上一点,且连接DF,并延长DF交BA的延长线于点E. (1)判断DB与DA的数量关系,并说明理由; (2)求证:△BCD≌△AFD; (3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.
(南充)已知关于x的一元二次方程,p为实数. (1)求证:方程有两个不相等的实数根; (2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
(成都)(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH. (1)求证:△ABC≌△EBF; (2)试判断BD与⊙O的位置关系,并说明理由; (3)若AB=1,求HG•HB的值.