某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?
如图,在 中, , , .
(1)利用尺规作线段 的垂直平分线 ,垂足为 ,交 于点 ,(保留作图痕迹,不写作法)
(2)若 的周长为 ,先化简 ,再求 的值.
某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间 (单位:小时),将学生分成五类: 类 , 类 , 类 , 类 , 类 .
绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:
(1) 类学生有 人,补全条形统计图;
(2) 类学生人数占被调查总人数的 ;
(3)从该班做义工时间在 的学生中任选2人,求这2人做义工时间都在 中的概率.
如图,点 , 在 上, , , .求证: .
如图, BD是正方形 ABCD的对角线, BC=2,边 BC在其所在的直线上平移,将通过平移得到的线段记为 PQ,连接 PA、 QD,并过点 Q作 QO⊥ BD,垂足为 O,连接 OA、 OP.
(1)请直接写出线段 BC在平移过程中,四边形 APQD是什么四边形?
(2)请判断 OA、 OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设 y= S △ OPB, BP= x(0≤ x≤2),求 y与 x之间的函数关系式,并求出 y的最大值.
如图,⊙ O是△ ABC的外接圆, BC是⊙ O的直径,∠ ABC=30°,过点 B作⊙ O的切线 BD,与 CA的延长线交于点 D,与半径 AO的延长线交于点 E,过点 A作⊙ O的切线 AF,与直径 BC的延长线交于点 F.
(1)求证:△ ACF∽△ DAE;
(2)若 S △ AOC = 3 4 ,求 DE的长;
(3)连接 EF,求证: EF是⊙ O的切线.