如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.5m. (1)按图示规律,第一图案的长度L1=m;第二个图案的长度L2= m; (2)用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系 ;
如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
(1)解不等式:;(2)求不等式组的整数解.
(1)计算:(﹣a)7÷(﹣a)4×(﹣a)3;(2)利用乘法公式计算:2014×2016﹣20152;(3)因式分解:x3﹣4x.
如图,已知直线y=2x分别与双曲线y=,y=(x>0)交于P、Q两点,且OP=2OQ,点A是双曲线y=上的动点,过A作AB∥x轴,AC∥y轴,分别交双曲线y=(x>0)于点B、C.连接BC.(1)求k的值;(2)随着点A的运动,△ABC的面积是否发生变化?若不变,求出△ABC的面积,若改变,请说明理由.(3)直线y=2x上是否存在点D,使得点A、B、C、D为顶点的四边平行四边形?若能,求出相应点A的坐标;若不能,请说明理由.