已知关于的一元二次函数.(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数上是增函数的概率.
已知集合,. (1)求集合; (2)若,求实数的取值范围.
已知集合A={-4,2-1,},B={-5,1-,9},分别求适合下列条件的的值. (1); (2).
已知函数在[0,+∞)上是减函数,试比较与的大小.
已知为函数图象上一点,为坐标原点,记直线的斜率. (1)若函数在区间上存在极值,求实数的取值范围; (2)当时,不等式恒成立,求实数的取值范围; (3)求证:
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且. (1)求双曲线的方程; (2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.