在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是,甲、丙二人都回答错的概率是,乙、丙二人都回答对的概率是.(Ⅰ)求乙、丙二人各自回答对这道题的概率;(Ⅱ)设乙、丙二人中回答对该题的人数为X,求X的分布列和数学期望.
附加题) 已知的极坐标方程分别是(a是常数). (1)分别将两个圆的极坐标方程化为直角坐标方程; (2)若两个圆的圆心距为的值。
附加题) 已知矩阵, (1)计算AB; (2)若矩阵B把直线的方程。
若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:,则称直线:为函数的“隔离直线”。已知(其中e为自然对数的底数)。试问: (1)函数的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由; (2)函数是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由。
已知函数 (1)若函数的图象的一个公共点恰好在x轴上,求a的值; (2)若p和q是方程的两根,且满足证明: 当
设,函数 (1)求m的值,并确定函数的奇偶性; (2)判断函数的单调性,并加以证明。