为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1 , x 2 ,估计 x 1 - x 2 的值.
已知函数.(1)若,求函数的极小值;(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
已知函数f(x)=x3-3x2+2x(1)在处的切线平行于直线,求点的坐标;(2)求过原点的切线方程.
在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.(1)求点的轨迹的方程;(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.求函数f(x)的单调区间和极值.
如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.