给定数列 a 1 , a 2 , . . , a n .对 i = 1 , 2 , . . . , n - 1 ,该数列前 i 项的最大值记为 A i ,后 n - i 项 a i + 1 , a i + 2 , . . . , a n 的最小值记为 B i , d i = A i - B i . (1)设数列 { a n } 为 3 , 4 , 7 , 1 ,写出 d 1 , d 2 , d 3 的值; (2)设 a 1 , a 2 , . . , a n ( n ≥ 4 ) 是公比大于1的等比数列,且 a 1 > 0 .证明: d 1 , d 2 , . . . , d n - 1 是等比数列. (3)设 d 1 , d 2 , . . . , d n - 1 是公差大于0的等差数列,且 d 1 > 0 ,证明: a 1 , a 2 , . . . , a n - 1 是等差数列.
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(Ⅰ)画出散点图; (Ⅱ)如果y对x有线性相关关系,求回归直线方程; (Ⅲ)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机 器的运转速度应控制在什么范围内?(参考数值:,)
当为何实数时,复数z =+ (Ⅰ)是实数;(Ⅱ)是虚数;(Ⅲ)是纯虚数.
设函数的图像在处的切线与直线平行。 (1)求的直线; (2)求函数在区间上的最小值; (3)若,利用结论(2)证明:
已知,求证:。
求直线被曲线所截的弦长。