眉山市三苏雕像广场是为了纪念三苏父子而修建的.原是一块长为米,宽为米的长方形地块,现在政府对广场进行改造,计划将如图四周阴影部分进行绿化,中间将保留边长为米的正方形三苏父子雕像,则绿化的面积是多少平方米?并求出当时的绿化面积.
如图,在平面直角坐标系xOy中,以点A(2,3)为圆心的⊙A交 x轴于点B,C,BC=8,求⊙A的半径.
如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.
用配方法解方程:.
如图,二次函数的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C. (1)求二次函数的解析式; (2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积; (3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.
如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.连接BD交AE于M,连接CE交AB于N,BD与CE交点为F,连接AF. (1)如图1,求证:BD⊥CE; (2)如图1,求证:FA是∠CFD的平分线; (3)如图2,当AC=2,∠BCE=15°时,求CF的长.