设是等比数列的前项和,,,成等差数列.(1)设此等比数列的公比为,求的值;(2)问:数列中是否存在不同的三项,,成等差数列?若存在,求出,,满足的条件;若不存在,请说明理由.
(本小题满分12分)已知函数. (Ⅰ)求函数的最小正周期和值域; (Ⅱ)若为第二象限角,且,求的值.
(本小题满分14分)已知函数(R). (1)若,求函数的极值; (2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。
(本小题满分13分) (本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米. (1)分别写出用表示和用表示的函数关系式(写出函数定义域); (2)怎样设计能使S取得最大值,最大值为多少?
(本小题满分12分)如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱⊥BD,点F为的中点. (Ⅰ)证明:平面; (Ⅱ)证明:平面平面.
(本小题满分12分)已知数列是等差数列,,数列的前n项和是,且. (I)求数列的通项公式; (II)求证:数列是等比数列;