已知数列是等差数列,是等比数列,其中且为、的等差中项,为、的等差中项.(1)求数列与的通项公式;(2)记,求数列的前项和.
A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.(1)若A点的坐标为,求的值;(2)求的取值范围.
已知函数f(x)=sin.(1)求它的振幅、周期、初相;(2)在所给坐标系中用五点法作出它在区间上的图象.(3)说明y=sin x的图像可由y=sin的图像经过怎样的变换而得到.
如图,函数的图象与轴相交于点,且该函数的最小正周期为.(1)、求和的值;(2)、已知点,点是该函数图象上一点,点是的中点,当,时,求的值.
已知数列的前项和为,且满足 (),,设,.(1)求证:数列是等比数列;(2)若≥,,求实数的最小值;(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成 (且)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.(1)若坐标为,,点在直线上时,求点的坐标;(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.