一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为(km),快车离乙地的距离为(km),慢车行驶时间为x(h),两车之间的距离为S(km),,与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示: (1)图中的a= ,b= ; (2)求S关于x的函数关系式; (3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.
如图①,在矩形纸片ABCD中,AB=+1,AD=. (1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为 ; (2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为 ; (3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)
某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图. 频数分布表
请根据上述信息,回答下列问题: (1)a= ,b= ; (2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是 ; (3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有 人.
如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2. (1)求证:AE=CF; (2)求证:四边形EBFD是平行四边形.
先化简,再求值:,其中x=2.
(1)计算:; (2)解方程:.