(北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.
为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图. (1)小明一共调查了多少户家庭? (2)求所调查家庭5月份用水量的众数、平均数; (3)若该小区有400户居民,请你估计这个小区5月份的用水量.
观察下列图形的变化过程,解答以下问题: 如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点. (1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由; (2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?
已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC. (1)试确定直线BC的解析式; (2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标.
已知m,n,d为一个直角三角形的三边长,且有=8n﹣n2﹣16,求三角形三边长分别为多少?
(1)某水果批发商,批发苹果不少于80kg时,批发价为2.5元/kg,小张携现金2500元到这个市场采购苹果,并以批发价买进,设购买的苹果为xkg,小张付款后还剩余现金y元,写出y与x的函数关系式,并指出自变量x的取值范围. (2)在直角坐标系中,直接画出函数y=|x+1|的图象.