(1)有三个不等式 2 x + 3 < - 1 , - 5 x > 15 , 3 ( x - 1 ) > 6 ,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
(2)小红在计算 a ( 1 + a ) - ( a - 1 ) 2 时,解答过程如下:
a ( 1 + a ) - ( a - 1 ) 2
= a + a 2 - ( a 2 - 1 ) … … 第一步
= a + a 2 - a 2 - 1 … … 第二步
= a - 1 … … 第三步
小红的解答从第 步开始出错,请写出正确的解答过程.
(宜宾)如图,抛物线与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P. (1)求抛物线的解析式; (2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H. ①当四边形OMHN为矩形时,求点H的坐标; ②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.
(遂宁)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点. (1)求反比例函数的解析式; (2)求一次函数的解析式; (3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
(自贡)如图,已知抛物线()的对称轴为直线,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B. (1)若直线经过B、C两点,求直线BC和抛物线的解析式; (2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标; (3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.
(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC. (1)求抛物线的函数关系式; (2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式; (3)若且时△OPN∽△COB,求点N的坐标.
(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1. (1)求抛物线解析式. (2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标. (3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.