如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.
如图,已知 ΔABC 中, ∠ C = 90 ° ,点 M 从点 C 出发沿 CB 方向以 1 cm / s 的速度匀速运动,到达点 B 停止运动,在点 M 的运动过程中,过点 M 作直线 MN 交 AC 于点 N ,且保持 ∠ NMC = 45 ° ,再过点 N 作 AC 的垂线交 AB 于点 F ,连接 MF .将 ΔMNF 关于直线 NF 对称后得到 ΔENF ,已知 AC = 8 cm , BC = 4 cm ,设点 M 运动时间为 t ( s ) , ΔENF 与 ΔANF 重叠部分的面积为 y ( c m 2 ) .
(1)在点 M 的运动过程中,能否使得四边形 MNEF 为正方形?如果能,求出相应的 t 值;如果不能,说明理由;
(2)求 y 关于 t 的函数解析式及相应 t 的取值范围;
(3)当 y 取最大值时,求 sin ∠ NEF 的值.
如图,已知抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的图象的顶点坐标是 ( 2 , 1 ) ,并且经过点 ( 4 , 2 ) ,直线 y = 1 2 x + 1 与抛物线交于 B , D 两点,以 BD 为直径作圆,圆心为点 C ,圆 C 与直线 m 交于对称轴右侧的点 M ( t , 1 ) ,直线 m 上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆 C 与 x 轴相切;
(3)过点 B 作 BE ⊥ m ,垂足为 E ,再过点 D 作 DF ⊥ m ,垂足为 F ,求 BE : MF 的值.
如图,已知 AB 是圆 O 的直径,弦 CD ⊥ AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF 交 CD 于点 N .
(1)求证: CA = CN ;
(2)连接 DF ,若 cos ∠ DFA = 4 5 , AN = 2 10 ,求圆 O 的直径的长度.
如图,设反比例函数的解析式为 y = 3 k x ( k > 0 ) .
(1)若该反比例函数与正比例函数 y = 2 x 的图象有一个交点的纵坐标为2,求 k 的值;
(2)若该反比例函数与过点 M ( − 2 , 0 ) 的直线 l : y = kx + b 的图象交于 A , B 两点,如图所示,当 ΔABO 的面积为 16 3 时,求直线 l 的解析式.
江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.