如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD.(1)若∠ABC=20°,则∠OCA的度数为 ;(2)判断直线AD与⊙O的位置关系,并说明理由;(3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.
我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心,旋转的角度称为旋转角.(1)如图(1),△ABC经过旋转得到△DEF.试用直尺和圆规作出旋转中心 (保留作图痕迹,不写作法) ;(2)如图(2),正方形ABCD中,E、F分别为CD、AD的中点,连接BE、CF,△BCE按逆时针方向旋转后得到△CDF,则旋转中心为 (请在图中画出该点,标上字母,并回答),旋转的最小角度为 .
某班数学兴趣小组为了测量建筑物AB与CD的高度,他们选取了地面上点E和建筑物CD的顶端点C为观测点,已知在点C处测得点A的仰角为45°;在点E处测得点C的仰角为30°,测得点A的仰角为37°.又测得DE的长度为9米.(1)求建筑物CD的高度;(2)求建筑物AB的高度(参考数据:≈1.73,sin37°≈,cos37°≈,tan37°≈).
如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F在BC上,且BE=CF.(1)求证:AE=DF;(2)若AD=EF,试证明四边形AEFD为矩形.
一辆货车将一批货物从甲地运往乙地,到达乙地卸货后返回.已知货车从乙地返回甲的速度比运货从甲到乙的速度快20km/h.设货车从甲地出发x(h)时,货车离甲地的路程为y(km),y与x的函数关系如图所示. (1)货车从甲地到乙地时行驶速度为 km/h,a= ;(2)求货车从乙到甲返程中y与x的函数关系式;(3)求货车从甲地出发3h时离乙地的路程.