(广元)经统计分析.某市跨河大桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞.此时车流速度为0千米/时;当车流密度不超过20辆/千米,车流速度为80千米/时.研究表明:当时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在某一交通时段.为使大桥上的车流速度大于60千米/时且小于80千米/时,应把大桥上的车流密度控制在什么范围内?
如图,已知 AB 是 ⊙ O 的直径,直线 BC 与 ⊙ O 相切于点 B ,过点 A 作 AD / / OC 交 ⊙ O 于点 D ,连接 CD .
(1)求证: CD 是 ⊙ O 的切线.
(2)若 AD = 4 ,直径 AB = 12 ,求线段 BC 的长.
某市为了加快 5 G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点 A 测得发射塔顶端 P 点的仰角是 45 ° ,向前走60米到达 B 点测得 P 点的仰角是 60 ° ,测得发射塔底部 Q 点的仰角是 30 ° .请你帮小军计算出信号发射塔 PQ 的高度.(结果精确到0.1米, 3 ≈ 1 . 732 )
如图,在 Rt Δ ABC 中, ∠ C = 90 ° .
(1)尺规作图:作 Rt Δ ABC 的外接圆 ⊙ O ;作 ∠ ACB 的角平分线交 ⊙ O 于点 D ,连接 AD .(不写作法,保留作图痕迹)
(2)若 AC = 6 , BC = 8 ,求 AD 的长.
化简求值: ( a - 1 a - a - 2 a + 1 ) ÷ 2 a 2 - a a 2 + 2 a + 1 ;其中 a 2 - a - 1 = 0 .
计算: ( 1 3 ) - 1 + | 1 - 3 tan 45 ° | + ( π - 3 . 14 ) 0 - 27 3 .