根据你的生活与学习经验,对代数式 表示的实际意义作出两种不同的解释.
“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种: A .非常了解, B .比较了解, C .基本了解, D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查 名学生;扇形统计图中 C 所对应扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
如图,已知二次函数 y = a x 2 + bx + 3 的图象交 x 轴于点 A ( 1 , 0 ) , B ( 3 , 0 ) ,交 y 轴于点 C .
(1)求这个二次函数的表达式;
(2)点 P 是直线 BC 下方抛物线上的一动点,求 ΔBCP 面积的最大值;
(3)直线 x = m 分别交直线 BC 和抛物线于点 M , N ,当 ΔBMN 是等腰三角形时,直接写出 m 的值.
如图,在 ΔABC 中, ∠ BAC = 90 ° , AB = AC , AD ⊥ BC 于点 D .
(1)如图1,点 E , F 在 AB , AC 上,且 ∠ EDF = 90 ° .求证: BE = AF ;
(2)点 M , N 分别在直线 AD , AC 上,且 ∠ BMN = 90 ° .
①如图2,当点 M 在 AD 的延长线上时,求证: AB + AN = 2 AM ;
②当点 M 在点 A , D 之间,且 ∠ AMN = 30 ° 时,已知 AB = 2 ,直接写出线段 AM 的长.
在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“ A .奶制品类, B .肉制品类, C .面制品类, D .豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:
(1)这次抽查了四类特色美食共 种,扇形统计图中 a = ,扇形统计图中 A 部分圆心角的度数为 ;
(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?