(本小题满分10分)如图甲,⊙的直径,圆上两点在直径的两侧,使, .沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点.根据图乙解答下列各题:(1)求点到平面的距离;(2)如图:若的平分线交弧于一点,试判断是否与平面平行?并说明理由.
(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与“国五条”赞成人数统计表(如下表): (1)试根据频率分布直方图估计这60人的平均月收入; (2)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调差,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
(本小题满分12分)如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP. (1)求证:PA∥平面BEF; (2)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的大小.
(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,若asinA=(a-b)sinB+csinC (1)求角C的值; (2)若c=2,且sinC+sin(B-A)=3sin2A,求△ABC的面积.
(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a2=-5,S5=-20. (1)求数列{an}的通项公式; (2)求使得不等式Sn>an成立的n的最小值.
已知函数 (1)若函数在内没有极值点,求实数a的取值范围; (2)若a=1时函数有三个互不相同的零点,求实数m的取值范围; (3)若对任意的,不等式在上恒成立,求实数m的取值范围.