. 已知点,为一个动点,且直线的斜率之积为(I)求动点的轨迹的方程;(II)设,过点的直线交于两点,的面积记为S,若对满足条件的任意直线,不等式的最小值。
数列的前项和记为,且满足.(1)求数列的通项公式;(2)求和;(3)设有项的数列是连续的正整数数列,并且满足:.问数列最多有几项?并求这些项的和.
已知圆.(1)直线:与圆相交于、两点,求;(2)如图,设、是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线、与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.
已知函数.(1)求函数的最小正周期,最大值及取最大值时相应的值;(2)如果,求的取值范围.
在正四棱锥中,侧棱的长为,与所成的角的大小等于.(1)求正四棱锥的体积;(2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)设点的横坐标,求点的坐标(用的代数式表示);(3)设为坐标原点,求四边形面积的最小值.