已知函数f(x)=lnx-.(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值.
(本小题满分14分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和. (Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线、的斜率分别为、,证明; (Ⅲ)探究是否是个定值,若是,求出这个定值;若不是,请说明理由.
(本小题满分13分)如图,在四棱锥中,平面,底面是菱形,. (Ⅰ)求证:平面 (Ⅱ)若求与所成角的余弦值; (Ⅲ)当平面与平面垂直时,求的长.
(本小题满分13分)设数列的前项和为,并且满足,. (Ⅰ)求; (Ⅱ)猜想的通项公式,并用数学归纳法加以证明.
(本小题满分13分) 我国政府对PM2.5采用如下标准: 三明市环保局从180天的市区PM2.5监测数据中,随机抽取l0天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶). (Ⅰ)求这10天数据的中位数. (Ⅱ)从这已检测到的l0天数据中任取3天数据,记表示空气质量达到一级的天数,求的分布列; (Ⅲ)以这10天的PM2.5日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级.
(本小题满分13分) 已知,,, (Ⅰ)若,,求的值; (Ⅱ)求函数的最小正周期及单调递增区间.