(本小题满分10分)在中,内角A、B、C的对边分别为,向量,且(1)求锐角B的大小;(2)已知,求的面积的最大值。
在△ABC中, 若I是△ABC的内心, AI的延长线交BC于D, 则有称之为三角形的内角平分线定理, 现已知AC=2, BC=3, AB=4, 且, 求实数及的值.
设两向量满足,的夹角为60°,若向量与向量的夹角为钝角,求实数t的取值范围.
求函数的最大值及相对应的的值.
已知向量=(1,2),=(cosa,sina),设=+t(为实数). (1)若a=,求当||取最小值时实数的值; (2)若⊥,问:是否存在实数,使得向量–和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由. (3)若⊥,求实数的取值范围A,并判断当时函数的单调性.
(本小题满分12分) 已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和. (1)求的解析式; (2)若锐角满足,求的值.