如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.
李丽、陈伟两位同学九年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:(1)根据上图中提供的数据填写下表:
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率较高的同学是: (3)你如何看待这两位同学这一阶段的数学学习,请分别给他们一条合理的建议.
如图:已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长 .
解方程(1)(配方法) (2)(公式法)
在平面直角坐标系xOy中,点、分别在轴、轴的正半轴上,且,点为线段的中点. (1)如图1,线段的长度为________________; (2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式; (3)如图3,设点、分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.
图2
已知在中,,,于,点在直线上,,点在线段上,是的中点,直线与直线交于点.(1)如图1,若点在线段上,请分别写出线段和之间的位置关系和数量关系:___________,___________;(2)在(1)的条件下,当点在线段上,且时,求证:;(3)当点在线段的延长线上时,在线段上是否存在点,使得.若存在,请直接写出的长度;若不存在,请说明理由.