(本小题满分14分)已知 (1)求,; (2)画出的图像; (3)若,问为何值时,方程没有根?有一个根?两个根?
(本小题满分12分)在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d(米)与车速v(千米/小时)需遵循的关系是d≥(其中a(米)是车身长,a为常量),同时规定d≥.(1)当d=时,求机动车车速的变化范围;(2)设机动车每小时流量Q=,应规定怎样的车速,使机动车每小时流量Q最大.
(本小题满分12分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.(1)求证:AE//平面DCF;(2)当AB的长为何值时,二面角A-EF-C的大小为.
(本小题满分12分)△ABC中,a,b,c分别是角A,B,C的对边,向量=(2sinB,2-cos2B),,⊥.(1)求角B的大小;(2)若,b=1,求c的值.
(本小题满分12分)在各项均为负数的数列中,已知点在函数的图像上,且.(1)求证:数列是等比数列,并求出其通项;(2)若数列的前项和为,且,求.
已知双曲线的中心在原点,它的渐近线与圆相切. 过点作斜率为的直线,使和交于两点,和轴交于点,且点在线段上,满足(I)求双曲线的渐近线方程;(II)求双曲线的方程;(Ⅲ)椭圆的中心在原点,它的短轴是的实轴. 若中垂直于的平行弦的中点的轨迹恰好是的渐近线截在内的部分,求椭圆的方程.