(本小题满分12分)在各项均为负数的数列中,已知点在函数的图像上,且.(1)求证:数列是等比数列,并求出其通项;(2)若数列的前项和为,且,求.
若实数满足,则的最小值为_______.
(本小题满分14分)已知函数的导函数.(1)若,不等式恒成立,求a的取值范围;(2)解关于x的方程;(3)设函数,求时的最小值.
(本小题满分14分)已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为.(1)求曲线的方程;(2)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.
(本小题满分14分)已知递增等差数列中的是函数的两个零点.数列满足,点在直线上,其中是数列的前项和.(1)求数列和的通项公式;(2)令,求数列的前n项和.
(本小题满分14分)如图,在直三棱柱中,,、分别是,的中点.(1)求证:∥平面;(2)求证:平面平面;(3)若,,求三棱锥的体积.