(本小题满分14分)已知递增等差数列中的是函数的两个零点.数列满足,点在直线上,其中是数列的前项和.(1)求数列和的通项公式;(2)令,求数列的前n项和.
(本小题满分10分)在海岛上有一座海拔1km的山峰,山顶设有一个观察站.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东、俯角为的处,到11:10时,又测得该船在岛北偏西、俯角为的处.(1) 求船的航行速度;(2) 求船从到行驶过程中与观察站的最短距离.
(本小题满分12分)已知函数.(Ⅰ)若,求曲线在处切线的斜率;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分12分)在直三棱柱中, AC=4,CB=2,AA1=2,E、F分别是的中点。(1)证明:平面平面;(2)证明:平面ABE;(3)设P是BE的中点,求三棱锥的体积。
已知椭圆:()的离心率,左、右焦点分别为、,点满足:在线段的中垂线上.(1)求椭圆的方程;(2)若斜率为()的直线与轴、椭圆顺次相交于点、、,且,求的取值范围.
已知函数 .(1)若在上是增函数, 求实数a的取值范围.(2)若是的极大值点,求在上的最大值;(3)在(2)的条件下,是否存在实数b,使得函数的图像与函数的图像恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.