已知数列是首项为1,公比为q的等比数列。(I)证明:当时,是递减数列;(II)若对任意,都有成等差数列,求q的值
已知集合,集合,集合(1)求;(2)若,求实数的取值范围;
对于函数与常数,若恒成立,则称为函数的一个“P数对”:设函数的定义域为,且.(1)若是的一个“P数对”,且,,求常数的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及区间上的最大值与最小值.
已知圆C:,直线l:.(1)求证:对直线l与圆C总有两个不同交点;(2)设l与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;(3)若定点分弦所得向量满足,求此时直线l的方程.
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.(1)求证:直线BE⊥平面D1AE;(2)求点A到平面D1BC的距离.
设等差数列的前项和为,且,,(1)求等差数列的通项公式.(2)令,数列的前项和为.证明:对任意,都有.