设等差数列的前项和为,且,,(1)求等差数列的通项公式.(2)令,数列的前项和为.证明:对任意,都有.
(本小题满分12分)已知抛物线:的焦点为,若抛物线经过圆的圆心,且.(1)求抛物线的方程及a的值;(2)设直线与抛物线有唯一公共点,且直线与抛物线的准线交于点,试探究,在坐标平面内是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.
(本小题满分12分)如图,在四棱柱中,底面是等腰梯形,∥,,,顶点在底面内的射影恰为点.(1)求证:;(2)若直线与直线所成的角为,求平面与平面所成角(锐角)的余弦函数值.
(本小题满分12分)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
(1)能否据此判断有的把握认为视觉和空间能力与性别有关? (2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时 间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率; (3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望. 下面临界值表仅供参考:
.
(本小题满分12分)在△ABC中,内角所对的边分别为,若. (1)求证:成等比数列且 ; (2)若,求△ABC的面积.
(本小题满分10分)选修4-5:不等式证明选将设函数(1)的解集为R,求实数a的取值范围;(2)若的解集为,,求证:.