(本小题满分12分)已知抛物线:的焦点为,若抛物线经过圆的圆心,且.(1)求抛物线的方程及a的值;(2)设直线与抛物线有唯一公共点,且直线与抛物线的准线交于点,试探究,在坐标平面内是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.
已知,求下列各式的值:(Ⅰ);(Ⅱ).
设函数(1)当时,求函数的定义域;(2)若函数的定义域为R,试求的取值范围.
已知直线l的参数方程: (t为参数)和圆C的极坐标方程:ρ=2sin(θ+).(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;(2)判断直线l和圆C的位置关系.
如图,是的一条切线,切点为,都是的割线,已知.(1)证明:;(2)证明:.
已知函数,如果函数恰有两个不同的极值点,,且.(Ⅰ)证明:;(Ⅱ)求的最小值,并指出此时的值.