(本题10分)已知,点I是△ABC的内心(三角形三个内角平分线的交点),过点B作BP⊥BI交AI的延长线于点P.(1)如图1,若BA=BC,①求证:BP∥AC;②设∠BAC=α(其中α为常数),求∠BCP;(2)如图2,CM、BN为△ABC的角平分线,若BM+CN=6,∠BAC=60°,请你直接写出点P到直线BC的距离的最大值等于___________.
如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( − 8 , 3 ) , B ( − 4 , 0 ) , C ( − 4 , 3 ) , ∠ ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = − 4 5 ,并与 y 轴交于点 G .
(1)求抛物线的解析式及点 G 的坐标;
(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.
①求 m 的值;
②连接 CG 交 x 轴于点 H ,连接 FG ,过 B 作 BP / / FG ,交 CG 于点 P ,求证: PH = GH .
如图, ΔABC 中, ∠ BAC = 120 ° , AB = AC = 6 . P 是底边 BC 上的一个动点 ( P 与 B 、 C 不重合),以 P 为圆心, PB 为半径的 ⊙ P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E .
(1)若点 E 在线段 CA 的延长线上,设 BP = x , AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.
(2)当 BP = 2 3 时,试说明射线 CA 与 ⊙ P 是否相切.
(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.
上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招 − − “定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.
流量阶梯定价标准
使用范围
阶梯单价(元 / MB )
1 − 100 MB
a
101 − 500 MB
0.07
501 MB − 20 GB
b
语音阶梯定价标准
阶梯资费(元 / 分钟)
1 − 500 分钟
0.15
501 − 1000 分钟
0.12
1001 − 2000 分钟
m
【小提示:阶梯定价收费计算方法,如600分钟语音通话费 = 0 . 15 × 500 + 0 . 12 × ( 600 − 500 ) = 87 元】
(1)甲定制了 600 MB 的月流量,花费48元;乙定制了 2 GB 的月流量,花费120.4元,求 a , b 的值.(注 : 1 GB = 1024 MB )
(2)甲的套餐费用为199元,其中含 600 MB 的月流量;丙的套餐费用为244.2元,其中包含 1 GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求 m 的值.
如图,矩形 ABCD 中,延长 AB 至 E ,延长 CD 至 F , BE = DF ,连接 EF ,与 BC 、 AD 分别相交于 P 、 Q 两点.
(1)求证: CP = AQ ;
(2)若 BP = 1 , PQ = 2 2 , ∠ AEF = 45 ° ,求矩形 ABCD 的面积.
如图, 3 × 3 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 A 、 B 、 C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 D 、 E 、 F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在 E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是 .