)如图:在三棱柱中,已知,.四边形为正方形,设的中点为D,求证(1);(2)
(本小题满分13分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m≠0),L交椭圆于A、B两个不同点。(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
已知数列()与{)有如下关系:(1)求数列(}的通项公式。 (2)设是数列{}的前n项和,当n≥2时,求证:
(本小题满分13分) 已知函数 上恒成立. (1)求的值; (2)若 (3)是否存在实数m,使函数上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.
(本小题满分13分)设三次函数,在处取得极值,其图像在处的切线的斜率为。(1)求证:;(2)若函数在区间上单调递增,求的取值范围。
本小题满分13分)已知函数(1)为定义域上的单调函数,求实数的取值范围(2)当时,求函数的最大值(3)当时,且,证明: