在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = 3 cos α y = sin α ( α 为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρ sin ( θ + π 4 ) = 2 2 .
(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;
(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 | PQ | 的最小值及此时 P 的直角坐标.
(本小题满分12分) 在△ABC中,已知,,B=45°求及c 。
(13分) 已知函数。 (I)当时,求曲线在点处的切线方程; (Ⅱ)当函数在区间上的最小值为时,求实数的值; (Ⅲ)若函数与的图象有三个不同的交点,求实数的取值范围。
. (12分) 已知函数f(x)= ,(p≠0)是奇函数. (1)求m的值. (2)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.
(12分) 已知a、b、c是互不相等的非零实数. 求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
设复数,试求实数m取何值时 (1)Z是实数; (2)Z是纯虚数; (3)Z对应的点位于复平面的第一象限