已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.
某人居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如算作两个路段:路段发生堵车事件的概率为,路段发生堵车事件的概率为). (Ⅰ)请你为其选择一条由到的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小; (Ⅱ)若记路线中遇到堵车次数为随机变量,求的数学期望.
(Ⅰ)在中,若,求角的大小. (Ⅱ)对于(Ⅰ)中的角,函数的图象按向量平移后,对应的函数为偶函数,求取最小值时的向量.
已知函数 (1)若,试确定函数的单调区间; (2)若且对任意,恒成立,试确定实数的取值范围; (3)设函数,求证:
.已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足 (Ⅰ)设为点P的横坐标,证明; (Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1M的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.
.已知函数(为常数),直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为1. (1)求直线l的方程及a的值;(2)当k>0时,试讨论方程的解的个数.