(本小题满分12分)数列{an}中,a1=,前n项和Sn满足Sn+1-Sn=(n∈N*).(1)求数列{an}的通项公式an以及前n项和Sn;(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
已知函数 (1)当时,求的单调递增区间; (2)当且时,的值域是求的值
已知函数=, (1)求函数的单调区间 (2)若关于的不等式对一切(其中)都成立,求实数的取值范围; (3)是否存在正实数,使?若不存在,说明理由;若存在,求取值的范围
椭圆:的右焦点为且为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点, (1)求椭圆的标准方程; (2)当=时,=,求实数的值; (3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论
已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点, (1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值
已知函数, (1)求的单调递减区间; (2)若在区间上的最大值为20,求它在该区间的最小值