(本小题满分13分)盒中装有7个零件,其中5个是没有使用过的,2个是使用过的.(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.
已知定义在实数集上的函数,,其导函数记为,(1)设函数,求的极大值与极小值;(2)试求关于的方程在区间上的实数根的个数。
椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.(1)求椭圆C以及圆O的方程; (2)当点在椭圆C上运动时,判断直线与圆O的位置关系.
如图,三棱锥中,底面于,,,点是的中点.(1)求证:侧面平面;(2)若异面直线与所成的角为,且,求二面角的大小.
某校为了解高二学生、两个学科学习成绩的合格情况是否有关, 随机抽取了该年级一次期末考试、两个学科的合格人数与不合格人数,得到以下22列联表:
(1)据此表格资料,你认为有多大把握认为“学科合格”与“学科合格”有关;(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“学科合格”的人数为,求的数学期望.附公式与表:
函数 ()的部分图像如右所示.(1)求函数的解析式;(2)设,且,求的值.