(本小题满分12分)已知函数.(I)讨论函数的单调区间;(II)当时,若函数在区间上的最大值为,求的取值范围.
(本小题满分12分)如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的左侧),且.(Ⅰ)求圆的方程;(Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.
(本小题满分12分)如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
(本小题满分12分)西安市某中学在每年的11月份都会举行“文化艺术节”,开幕式当天组织举行大型的文艺表演,同时邀请36名不同社团的社长进行才艺展示.其中有的社长是高中学生,的社长是初中学生,高中社长中有是高一学生,初中社长中有是初二学生.(Ⅰ)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;(Ⅱ)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为,求的分布列及数学期望.
(本小题满分12分)已知等差数列满足:,,该数列的前三项分别加上1,1,3后成等比数列,.(Ⅰ)分别求数列,的通项公式;(Ⅱ)求证:数列的前项和.
(本小题满分10分)已知数列通项公式为,其中为常数,且,.等式,其中为实常数.(1)若,求的值;(2)若,且,求实数的值.